
c© 2017 IEEE. This is the authors’ version of the work presented at the IEEE International Conference on Communications (ICC), Workshop on Application
of Green techniques to emerging Communication and Computing paradigms (GCC), Paris, France, May 2017 (http://ieeexplore.ieee.org). Personal use of this
material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

rev. 151

Green Control of Network Nodes with TCAM-ALG

Mariusz Żal, Filip Idzikowski

Faculty of Electronics and Telecommunications, Poznan University of Technology, Poland, firstname.lastname@put.poznan.pl

Abstract—Typically Ternary Content Addressable Memories
(TCAMs) are used for simple lookups inside forwarding or
routing information bases in routers or switches. We propose
a new application of TCAM as the element of switching fabric
control module inside a switching node, which is able to directly
determine the set of established connections that block an
arriving connection. We propose an algorithm called TCAM-
ALG that utilizes this feature when establishing and releasing
connections. Usage of TCAM-ALG and no Central Processing
Unit (CPU) in the proposed control module results in lower
energy consumption than in case of control modules using three
alternative algorithms utilizing Random-Access Memory (RAM)
and a CPU.

I. INTRODUCTION

Green networking has become a well-established field of

research. There are many works that focus on reduction

of energy consumption of various network components in

different types of networks [1]. Most of the works in the

field of wired networks focus on the data plane [2, 3]. We

take a different approach and look at the control plane of the

network. In particular, we look at the locally implemented

control algorithm of a single network node.

Each switching node is an important element of a data

transmission system such as a telecommunications network.

Its task includes reliable and optimal (from the service quality

point of view) data distribution to particular network areas

as well as data exchange between autonomous networks [4].

A general switching node architecture is presented in Fig. 1.

It is divided into a data plane and a control plane. In the data

plane, each node contains a certain number of input and output

interfaces through which end users in access networks or other

switching nodes in backbone networks are attached. When

an input interface receives a connection request, information

about this event is sent to the control plane that is responsible

for serving the received data. We focus on energy consumed

by the control module that uses a control algorithm to make

decisions how to forward data from its input interface to its

output interface. The forwarding operation is done by the

switching fabric, which is the central element of any switching

node.

Routers and switches require high-performance searching

engines to make forwarding decisions. A commercial TCAM

device can perform up to 360 million searches per second [5].

Such high performance leads to increased energy consumption

in comparison to RAM. Cost of TCAM (expressed for example

in the number of used transistors) is also non-negligible.

Therefore, a number of energy-efficient TCAM architectures

have been proposed for packet-switched networks. They focus

mainly on reduction of power consumption of match line [6]

Interface

Interface

Interface

Interface

Interface

Interface

Switching

Fabric

Inputs Outputs

D
at

a
p
la

n
e

C
o
n
tr

o
l

p
la

n
e Control

Management

Fig. 1. General switching node architecture.

or energy-aware usage [5] In this work, we consider a new

area of TCAM usage in the control plane, and propose a con-

trol algorithm utilizing it. We compare the proposed control

algorithm with three alternative algorithms known from the

literature answering the following research questions: (i) how

much energy is consumed by a network node for its control?,

(ii) what is the cost of memory used in a network node taking

into account the difference of using TCAM and RAM?

The rest of the paper is structured as follows. The node

architecture is detailed in Section II. The model of the switch-

ing fabric based on De Bruijn graph properties is presented

in Section III. The proposed control algorithm TCAM-ALG is

described in Section IV and evaluated in Section V. Section VI

concludes this work.

II. NODE ARCHITECTURE USING TCAM

We describe the data plane and the control plane of the

switching node architecture introduced in Fig. 1. Table I

contains a summary of notation used in this work.

A. Data plane

The switching fabric is the workhorse of the data plane. It

is used to transport data (e.g., packets) from input to output

interfaces. In this work, a log2(N, 0, p) switching fabric (called

also a banyan-type switching fabric) with perfect-shuffle to-

pology is considered (Fig. 2) [7]. This switching fabric is

constructed with p vertically stacked log2 (N, 0, 1) switching

fabrics, where N , being a power of 2, denotes the number of

both inputs and outputs. Each copy of log2 (N, 0, 1) switching

fabric, called a plane, is composed of 2×2 bufferless switching

elements arranged in n = log2 N stages. The switching fabric

considered in this work has no extra stages defined according

to [4]. This is indicated by the “0” in log2 (N, 0, 1). Each

stage contains N/2 switching elements, numbered from 0 to
N/2−1 from top to bottom. Inputs and outputs of the switching

fabric are numbered 0, 1, . . . , N − 1 from top to bottom, and

stages are numbered 1, 2, . . . , n from left to right. Input i
of each plane is connected with input i of switching fabric

http://ieeexplore.ieee.org

TABLE I
NOTATION USED THROUGHOUT THE PAPER.

Symbol Description

A
rc

h
it

ec
tu

re

N number of inputs (outputs) in the switching fabric
p number of vertically stacked planes
n number of stages of switching elements, n = log2 N
Ss
e e-th switching element in stage s

Is
l

l-th link between stages s and s+ 1
〈x, y〉 a connection between input link x and output link y
(X,Y) a relation, i.e., a set of switching elements and interstage

links belonging to connection path of connection 〈x, y〉
L(i) a label of element i, i.e., element number expressed in form

of a binary number
m size of a data structure expressed in the number of elements

representing existing connections in a switching fabric

D
e

B
ru

ij
n

g
ra

p
h

G(g, d) a De Bruijn graph with dg vertexes and dg+1 arcs
g number of symbols in vertex label in a De Bruijn graph
Zd alphabet of symbols used in the De Bruijn graph, Zd =

{0; 1} in this work
d number of symbols in Zd, i.e., d = |Zd|
V set of nodes in a De Bruijn graph

V i vertex in the De Bruijn graph G(g, d), denoted as L(V i) =
vig−1

, . . . , vi
1
, vi

0

A set of arcs in a De Bruijn graph

Ai an arc in the De Bruijn graph G(g, d), denoted as L(Ai) =
aig , a

i
g−1

, . . . , ai
1
, ai

0

T
C

A
M

-A
L

G

Bi i-th TCAM bank (0 6 i 6 n− 1)
zmax height of a TCAM bank (number of rows, zmax = N −1)
cmax width of a TCAM bank (the number of columns, cmax =

2n for Bn and cmax = 2n− 2 for other cases)
K searched word, K = kmax c−1, kmax c−2, . . . , k1, ks0
W z a word stored at row z of a TCAM bank, W z =

wz
cmax−1

, wz
cmax−2

, . . . , wz
1
, wz

0

Mz a mask stored at row z of a TCAM bank, Mz =
mz

cmax−1
,mz

cmax−2
, . . . ,mz

1
,mz

0

RA a set of signals containing information about existing con-
nections that block a new connection 〈x, y〉, raz = 1
indicates that at least one result line of Bi is equal to 1

RB a set of signals indicating which word W z of bank Bi

contains label L((X,Y))
C a matrix binding information about existing connections and

used planes, cz,j = 1 indicates that connection represented
by L(〈x, y〉) and stored in row z is set up through plane j

PT TCAM search result at row z depending on K, W z and
Mz (Eq. (1))

through a DMUX, while a MUX is used to connect output

o of each plane with output o of the switching fabric. The

switching element e in stage s is denoted by Ss
e in each plane,

where 0 6 e 6 N/2 − 1 and 1 6 s 6 n. Let Isl denote the

interstage link connected to output of switching element Ss
e ,

where l = 2e or l = 2e + 1 for link connected to upper or

lower output of a switching element, respectively. Since the

switching fabric is composed of 2×2 switching elements, the

number of links in each stage of interstage links is equal to

N . Links are numbered in each stage from 0 to N − 1 from

top to bottom, thus 0 ≤ l ≤ N − 1.

We define a connection 〈x, y〉 between input link x and

output link y in log2(N, 0, p) switching fabric as a set of

resources of switching fabric occupied at a given time instance.

Resources used by the connection, i.e., a set of switching

elements and interstage links, are called a connection path.

There is exactly one connection path in log2(N, 0, 1) switching

fabric between input x and output y. When two connections

have to share at least one interstage link, each of them must

plane p

0

1

N − 1 plane 2

plane 1Switching fabric log2(N, 0, 1)

S1

N

2
−1 I1N−1

I1N−2

S1
e I12e+1

I12e

S1
1 I13

I12

S1
0 I11

I10

S2

N

2
−1

S2
e

S2
1

S2
0

I20

Ss

N

2
−1

Ss
e

Ss
1

Ss
0

Is−1

0 Is0

Sn

N

2
−1

Sn
e

Sn
1

Sn
0

In−1

0

1 2 s n
stages

0

1

N − 1

i
DMUX at input i

o
MUX at output oSs

e Is2e+1

Is2e
Switching element e in stage s

Fig. 2. A log2(N, 0, p) switching fabric with a perfect-shuffle topology.

be set up through a different plane. In order to determine

the state of the switching fabric, it is sufficient to limit

information about each connection to the number of the first

stage switching element and the number of the last stage

switching element under the assumption that all switching

elements are non-blocking. This pair is called a relation (X,Y)
between a switching element X at the input stage and a

switching element Y at the output stage, where X = ⌊x/2⌋
and Y = ⌊y/2⌋.

B. Control plane

In order to set up a new connection in the data plane, the

control plane takes a decision how to realize it. Every time

a new connection arrives at an input of a switching node,

the control plane uses a control algorithm to find a path to

set up this connection. The control algorithm is divided into

two parts: searching and forwarding. Searching is one of the

most important, complex, and common operations performed

in both circuit and packet processing. Forwarding depends on

the type of switching fabric and is out of scope of this work.

The most popular structures used in control algorithms, i.e.,

arrays and linked lists are implemented in RAM. The disad-

vantage of these structures is complexity of search operations

that consumes CPU computing power. Content Addressable

Memory (CAM) [8] instead of RAM can be used in order to

reduce searching time. CAM is more complex and expensive

than RAM, but the address of the searched value is immedi-

ately returned upon the search request without using a CPU.

CAM is a hardware component that enables search perfor-

mance within a single clock cycle. Similarly to RAM, CAM

contains conventional semiconductor memory cells. However,

CAM is able to simultaneously compare the searched value

against all values stored in the CAM. CAM cells are ar-

ranged in horizontal words and columns indexed by z and

c, respectively, 0 6 z 6 zmax − 1 and 0 6 c 6 cmax − 1
(see Fig. 3). Each CAM memory cell contains a storage

circuit and a comparison circuit. They allow a simultaneous

comparison of the searched word K = kcmax−1, . . . , k1, k0
(delivered to memory cells through search line) with the

values stored in each CAM cell (not detailed in Fig. 3 for

z
m
a
x
−
1

2

1

0

E
n

co
d

er

Search data register and drivers

0 1 2 cmax − 1
row

(z)

column (c)
Match Line

Sense Amplifier

Searched word

K = kcmax−1, kcmax−2, . . . , k1, k0

M
atch

L
o

catio
n

Match Line

Search Line

Memory

Cell in:

wz
i – BCAM

mz
i

wz
i

– TCAM

Fig. 3. CAM structure (BCAM and TCAM structures distinguished by
different memory cells).

its clarity). Comparison results from particular words are sent

to corresponding match lines.

There are two main types of CAM, i.e., Binary Content

Addressable Memory (BCAM) and TCAM as indicated in

Fig. 3. BCAMs store one of two values (zero and one),

whereas TCAMs store one of three values: zero, one, and do

not care. The third value allows masked searches if the values

are compared with the masked entries stored in TCAM. The

comparison in BCAM is simple and requires only stored word

W z = wz
cmax−1, . . . , w

z
1 , w

z
0 , while in case of TCAM, mask

Mz = mz
cmax−1, . . . ,m

z
1,m

z
0 is additionally used to show if

a given bit wz
c is important (mz

c = 0) or not (mz
c = 1).

When the search operation is triggered, all bits of the

searched word K are compared with corresponding bits of

each word in TCAM, and the value of match line z is

PT (K,W z,Mz) =
∏cmax−1

i=0

(

ki ⊕ wz
i

)

∨mz
i . (1)

The function PT (K,W z,Mz) is used in Section IV to detect

if an arriving connection is blocked in a given plane.

III. SWITCHING FABRIC MODEL WITH DE BRUIJN GRAPHS

The control plane needs to determine whether an arriving

connection can be established through the switching fabric

or must be rejected. We use a De Bruijn graph [9] for this

purpose. The De Bruijn graph is a useful tool to represent the

whole switching fabric because each stage of an interstage link

has the same pattern in the perfect-shuffle switching fabric.

The labels of De Bruijn graph nodes represent the labels of

switching elements. The De Bruijn graph determines (inside

one stage of the interstage links) the labels of output switching

elements available from input switching elements. Edge labels

unequivocally define the relationship, which determines the set

of interstage links. The label of interstage link is created by

concatenating the label of switching element at stage s and

the most significant bit from the label of connected switch in

the next stage.

000
0000

0

0010001

1

010

00100

101

0101
1

1010
0

011

1011

1

00111

100

1001

1 1000
0

1000
0

110

1101

1

0110

0

1100 0

111

0111

1

1110

0
1111

1

(a) De Bruijn graph G(2, 3).

111

110

100

011

010

000

111

110

101

100

011

001

000

111

110

100

011

010

001

000

111

110

101

100

001

000

001

101

010

101

010

011

1111

1110

1101

1100

1011

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

1111

1110

1101

1100

1011

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

1111

1110

0000

0001

1111

1110

0000

0001

1111

1110

0000

0001

(b) Connections 〈2, 7〉 and 〈11, 4〉 in a log2(16, 0, 1) switching fabric.

X1= 0 0 1 0 1 1 = Y 1

L((X1, Y 1)) =

= 0 0 1 0 1 1

S1
1 = 0 0 1

S2
2 = 0 1 0

S3
5 = 1 0 1

S4
3 = 0 1 1

I12 = 0 0 1 0

I25 = 0 1 0 1

I311= 1 0 1 1

X2= 1 0 1 0 1 0 = Y 2

L((X2, Y 2)) =

= 1 0 1 0 1 0

S1
5 = 1 0 1

S2
2 = 0 1 0

S3
5 = 1 0 1

S4
2 = 0 1 0

I110= 1 0 1 0

I25 = 0 1 0 1

I310= 1 0 1 0

(c) Labels of switching elements and interstage links belonging to
relations presented in Fig. 4(b).

Fig. 4. Exploitation of a De Bruijn graph in detection of blocking relations.

A more formal description of the usage of De Bruijn graphs

is presented next. It is followed by an example. The De Bruijn

graph G(g, d) is a directed graph composed of a set of

vertexes V = {V i : 0 6 i 6 dg − 1} and a set of arcs

A = {Al : 0 6 l 6 dg+1 − 1} connecting vertexes in a re-

circulating d-shuffle pattern, where d and g are non-negative

integers. The interconnection function is the same as that in

ShuffleNet graphs [10]. In contrast to ShuffleNet graphs, the

De Bruijn graph represents only one stage of the log2(N, 0, 1)
switching fabric [11]. An exemplary De Bruijn graph G(2, 3)
is presented in Fig. 4(a). Each vertex and each arc in G(g, d)
are labeled. Every label contains respectively g and g + 1
symbols from Zd alphabet. Since we consider a switching

fabric composed of 2×2 switching elements, Zd = {0, 1}. Let

L(V i) = vig−1, . . . , v
i
1, v

i
0 and L(Al) = alg, a

l
g−1, . . . , a

l
1, a

l
0

(vix, a
l
x ∈ Zd) denote labels of vertex V i and arc Al in the

De Bruijn graph, respectively. The vertex V i is connected with

the vertex V j by an arc Al if

L(Al) = vig−1, . . . , v
i
1, v

i
0, v

j
0 = vig−1, v

j
g−1, . . . , v

j
1, v

j
0, (2)

i.e., each arc is labeled by the most significant symbol of the

label of the originating vertex, followed by the label of the

destination vertex. Moreover, since each output arc attached

to a given vertex is determined by a symbol from Zd, the

arc label is constituted by a concatenation of the label of

originating vertex and the arc output symbol (see the arc

labeled “0001” as a concatenation of node label “000” and arc

output symbol “1” in Fig. 4(a)). The label of destination vertex

is equal to g less significant symbols of the label of incoming

arc. Labels of vertexes and arcs determine respectively labels

of each switching element Ss
e and each interstage link Isl for

a given stage s of a switching fabric, i.e., L(Ss
e) = L(V e) and

L(Isl) = L(Al). Let us also define a label of relation (X,Y)
as a concatenation of labels of S1

X and Sn
Y :

L((X,Y)) = xn−1 . . . x2, x1, yn−1 . . . y2, y1, (3)

where xn−1 . . . x2, x1, x0 and yn−1 . . . y2, y1, y0 are binary

representations of an input link x and an output link y,

respectively. The labels of switching elements and interstage

links belonging to the connection path 〈x, y〉 at each stage

of the switching fabric can be extracted from L((X,Y)). The

label of relation (X,Y) on the first n−1 (the most significant)

bits contains the label of S1
X . The next symbol is the most

significant bit from the label of Sn
Y . These n − 1 + 1 = n

bits represent the label of I1l . According to Eq. (2), this label

contains the label of S2
e on the n − 1 least significant bits.

Thus, starting from bit 2n − 3 of L((X,Y)), the next n − 1
bits contain label of S2

e. When we add the (n − 4)-th bit to

label of S2
e, we obtain the label of I2l . The presented operation

is performed for each stage of interstage links, i.e., n−1 times.

As an example let us consider connection 〈2, 7〉, and cor-

responding relation (1, 3), in log2(16, 0, 1) switching fabric

indicated with a bold solid line in Fig. 4(b). The relation

(1, 3) is represented in the De Bruijn graph (Fig. 4(a)) by

vertexes and arcs with the same labels as the labels of switches

and interstage links belonging to (1, 3) in Fig. 4(b) (also

indicated with a bold solid line). The symbol of outgoing

link in each vertex indicates if a connection is set up using

upper (0) or lower (1) switch output. We can see that a

label composed of symbols of outgoing links is the same

as the label of S4
2 , i.e.,010. It corresponds to self-routing

properties of log2(N, 0, 1) switching fabric, i.e., the ability

to take decision how to route received data based only on

the label of destination switching element. In Fig. 4(b) an

additional connection 〈11, 4〉 (represented by relation (5, 2)) is

indicated by bold dashed line. Labels of all elements belonging

to connection path of relation (1, 3) and (5, 2) are presented

in Fig. 4(c). Labels of all switching elements and interstage

links are determined based on L((1, 3)) and L((5, 2)). As

we can see both relations share three elements: S2
2 , I25 , S3

5 .

Since the shared elements contain an interstage link (marked

in Fig. 4(c) by doted rectangle), these connections must not

be set up through the same plane.

IV. PROPOSED NODE CONTROL ALGORITHM TCAM-ALG

A control algorithm is required to realize an arriving con-

nection over a switching fabric presented in the previous

section. The control algorithms for switching fabric can be

divided into two major groups, i.e., serving unicast connections

and serving multicast connections [4]. Both of them can

be divided into three sub-groups: path searching algorithms,

rearrangement algorithms, and repacking algorithms. In or-

der to conduct a fair comparison of existing and proposed

algorithms, in this paper we focus only on the path searching

algorithms for unicast connections. These algorithms choose

a path (equivalent to choosing a plane in our case) to realize

a connection or reject it in case no path is available. Several

path searching algorithms for unicast connections have been

proposed in the literature, e.g., random, sequential, packing,

matrix algorithms [4, 12]. Searching algorithms should have

low complexity in order to be energy-efficient. Taking into

account this requirement, we consider the following energy-

unaware algorithms in our study:

• Sequential – a plane for arriving connection is sequen-

tially searched for starting from plane i = 0 up to plane

p− 1 [4];

• Packing (Beneš) – the arriving connection is established

through the most loaded but available plane [4];

• Matrix – the arriving connection is established through

such a plane in which this connection blocks the fewest

possible future connections [12].

We use the model of switching fabric described in Sec-

tion III to check if a plane of log2(N, 0, p) switching fabric

with the perfect-shuffle topology is available for the arriving

connection. Recall that the label of relation L((X,Y)) is

composed of 2n − 2 symbols of alphabet Zd (see Eq. (3)).

Two relations block each other if at least n sequential symbols

in their labels are equal. Each relation label may be presented

as n − 1 subsequences composed of n symbols as presented

in Fig. 4(c) using labels of interstage links Isl . Hence, to

find every possible blocking configuration, the comparison

must be repeated n − 1 times. This operation is realized

simultaneously in TCAM banks (sets of TCAM cells) that

represent a particular stage of interstage links. Based on this

simultaneous operation, we propose a control algorithm with

the idea similar to the sequential algorithm, but realized with

TCAM. This algorithm, called TCAM-ALG, is divided into

two parts. The first part (Alg. 1) is used to select the plane for

the new connection. It is triggered by the connection arrival

at an input link. The second part (Alg. 2) starts immediately

after an existing connection is terminated in order to update

information about the state of the switching fabric. All steps of

the for loops in Algs. 1 and 2 are performed simultaneously

in hardware. The for loops are shown in Algs. 1 and 2 for

clarity of presentation.

The TCAM-ALG is implemented in TCAM that is divided

into banks Bi, 1 ≤ i ≤ n (see Fig. 5). Decomposition

of TCAM into banks is usually used to reduce its power

consumption by deactivating unused banks [13]. In our work,

Algorithm 1 Connection establishment in TCAM-ALG.

Input: 〈x, y〉, B1, B2, . . . , Bn−1, Bn, C
Output: Plane k (0 ≤ k ≤ p) used to set up new connection

〈x, y〉, updated B1, B2, . . . , Bn−1, Bn, C
1: Determine L(〈x, y〉), Eq. (5);

2: Determine L((X,Y)), Eq. (3);

3: Determine RA and RB, Eqs. (6) and (7);

4: for (i = 0; i 6 n− 1; i++) do

5: Determine fi, Eq. (8);

6: end for

7: Choose the first fi = 0, where k = i + 1 indicates the

plane chosen to set up the new connection; If all fi = 1
there is no available plane for 〈x, y〉, a new connection is

rejected, and the algorithm terminates;

8: for (z = 0; z ≤ N − 1; z++) do

9: Determine ez , Eq. (9);

10: end for

11: Choose the first ez = 0, where z indicates the first empty

W z in TCAM banks;

12: for (i = 1; i 6 n− 1; i++) do

13: Write W z = L((X,Y)) into Bi;

14: end for

15: Write word Uz = L(〈x, y〉) to Bn;

16: cz,k = 1;

Algorithm 2 Connection release in TCAM-ALG.

Input: 〈x, y〉, B1, B2, . . . , Bn−1, Bn, C
Output: Updated B1, B2, . . . , Bn−1, Bn, C

1: Determine L(〈x, y〉), Eq. (5);

2: Determine RA and RB, Eqs. (7) and (7);

3: Based on RB determine z : ez = 1, Eq. (9);

4: for (i = 0; i 6 p− 1; i++) do

5: cz,i = 0;

6: end for

this technique is used to separate search of blocking relation

in particular stages of interstage links, while power reduction

is achieved with a control algorithm (TCAMs allow parallel

lookups of blocking paths with time complexity of O(1) [14]).

Each Bi for 1 6 i 6 n − 1 is composed of N × (2n − 2)
TCAM cells and contains N words W z masked by M i. The

words W z in banks Bi, 1 6 i 6 n − 1, store relation labels

of existing connections. The mask M i in bank Bi is used to

indicate important bits, i.e., the bits on positions in the relation

label L((X,Y)) corresponding to stage i of interstage links.

In a given bank all masks mj
j are the same and are given by:

mi
j =







0 if j 6 i+ 1 ≤ j + n and 0 6 i 6 n− 1,
0 if i = n,
1 for other cases.

(4)

The bank Bn ties connection 〈x, y〉 with particular row z,

0 ≤ z ≤ N − 1 in all banks Bi, where 1 6 i 6 n − 1.

The words Uz and masks M i in Bn are composed of 2n
bits. The bank Bn contains labels of connections existing in

the log2(N, 0, p) switching fabric. These labels, denoted as

RA

RB

U0

Mn 0 . . . 0 . . . 0 . . . 0
U1

Mn 0 . . . 0 . . . 0 . . . 0

Uz

Mn 0 . . . 0 . . . 0 . . . 0

UN−1

Mn 0 . . . 0 . . . 0 . . . 0

W 0

Mn−1 0 . . . 0 1 1
W 1

Mn−1 0 . . . 0 1 1

W z

Mn−1 0 . . . 0 1 1

WN−1

Mn−1 0 . . . 0 1 1

W 0

Ms 1 . . . 0 . . . 0 . . . 1
W 1

Ms 1 . . . 0 . . . 0 . . . 1

W z

Ms 1 . . . 0 . . . 0 . . . 1

WN−1

Ms 1 . . . 0 . . . 0 . . . 1

W 0

M1 1 1 0 . . . 0
W 1

M1 1 1 0 . . . 0

W z

M1 1 1 0 . . . 0

WN−1

M1 1 1 0 . . . 0

c0,0 c0,1 c0,p−1

c1,0 c1,1 c1,p−1

cz,0 cz,1 cz,p−1

cN−1,

0

cN−1,

1

cN−1,

p−1

P
ri

o
ry

ty
d
ec

o
d
er

Decision module

eN−1

ez

e1

e0

f0 f1 fp−1

min(z) : ez = 0

z : ez = 1

min(i) : fi = 0

2n− 2 2n− 2 2n− 2

2n− 2

2n

L((X,Y))

L(〈x, y〉)

Bn

C

Bn−1 Bs B1

2n− 2 2n− 2 2n− 2

2n

1 1

2

2

3

4-6

4-6

16

15 3

8-10

12-14

11

7

Vector of signals OR operation

1 Step(s) in Alg.1

1 Step(s) in Alg.2

Fig. 5. Division of TCAM in TCAM-ALG.

L(〈x, y〉), are created by concatenating binary representations

of an input link number x and an output link number y, i.e.,

L(〈x, y〉) = xn−1 . . . x2, x1, x0, yn−1 . . . y2, y1, y0 (5)

as the word Uz masked by Mn with all bits equal to 0.

As presented in Fig. 3, each word W z in TCAM has its

own match line with state given by Eq. (1). Signals (bits)

from particular result lines are logically summed to obtain

a set of lines RA which contains information about existing

connections that block a new connection. The existence of

element raz indicates that at least one Bi, 1 6 i 6 n− 1 on

result line z is equal to 1. The set RA is defined as follows:

RA =

{

raz : raz = (z + 1) ·
n−1
⋃

i=1

PT (L((X,Y)),W z,M i),

raz > 0, 0 6 z 6 N − 1} . (6)

Multiplication by z + 1 (rather than z) is performed only to

solve the ambiguity caused by multiplication indexes (zero-

based) and values returned by Eq. (1). Similarly, we define

a set of lines RB used to indicate which W z at bank Bi

represents 〈x, y〉. This set is defined as

RB =
{

rbz : rbz = (z + 1) · PT (L(〈x, y〉), Uz,Mn),

rbz > 0, 0 6 z 6 N − 1} . (7)

Both sets RA and RB form an address of matrix C binding

information about existing connections and occupied planes.

The matrix C is composed of N rows and p columns. The

value cz,j equal to 1 means that relation represented by word

W z in row z in every TCAM bank is set up through plane

j+1. The matrix C has two sets of result lines, i.e., horizontal

and vertical lines. The vertical result lines are connected to

a decision module through p lines denoted as fi, 0 6 i 6 p−1.

The state of a particular fi depends on RA and on the content

of C. It is calculated as follows:

fi =
⋃

∀j∈RA
cj−1,i (8)

If fi = 1, connection 〈x, y〉 is blocked in plane i+ 1.

Signals ez for 0 6 z 6 N − 1 indicate the first available

W z that will be used by a new connection in case of Alg. 1

or they indicate which W z stores L((X,Y)) to be released

(in case of Alg. 2). The state of particular ez is given by:

ez =

{

⋃

∀j∈RB cz,j−1 for j > 0 in case of Alg.1,
⋃p−1

j=0
cz,j in case of Alg.2,

(9)

Connection establishment: When a new connection re-

quest 〈x, y〉 arrives at the switching node input interface, the

control module has to find a plane to set up this connection

(Alg. 1). The labels L(〈x, y〉) and L((X,Y)) are determined

respectively in Steps 1 and 2 of Alg. 1. Next, bits of L((X,Y))
are sent to Bi (1 6 i 6 n− 1) as searched words. The results

of matching operation in each Bi (1 6 i 6 n− 1) are sent to

corresponding match lines. The set RA is determined based on

their states (Step 3). Signal raz = 1 indicates that at least one

Bi on result line z is equal 1, i.e., a connection represented

by W z in plane i blocks the arriving (new) connection. We

determine values of all signals fi based on the set RA and

matrix C, and we choose the line fi = 0 with the smallest

i (Step 7), i.e., the plane k = i + 1 will be used to set up

connection 〈x, y〉. Next, the state of switching fabric must

be updated. In Steps 8–10, available positions (not used by

existing connections) in TCAM banks are determined, and the

first available position (with the smallest index z) is chosen

(Step 11). Next, L((X,Y)) and L(〈x, y〉) are written (Steps

12-14 and Step 15, respectively) to appropriate TCAM banks

at the position chosen in Step 11. The matrix C is updated in

Step 16.

Connection release: Alg. 2 is triggered when an established

connection terminates. In Step 1, L(〈x, y〉) is determined. This

label is used in Step 2 as the searched word for Bn. As a result

of the searching, we obtain the set RB containing exactly one

element equal to 1, which corresponds to position at which

released connection is stored. In Step 3, we determine, using a

priority decoder, the number z that corresponds to the position

used in TCAM banks by 〈x, y〉. The Steps 4–6 of Alg. 2

remove this connection from matrix C.

V. EVALUATION

A. Scenarios and metrics

We evaluate TCAM-ALG and the three alternative algo-

rithms in a simulative way using two evaluation metrics. First,

we calculate energy consumed by the control module to pro-

cess all connections over a day regarding their establishment

and release. We use the energy model from [15, 16] and the

values of energy quanta for a particular CPU operation (e.g.,

division) from [17]. A detailed description of the considered

CPU operations are omitted due to space constraints.

As shown above, the proposed algorithm determines con-

nection path without using a CPU. Thus, the energy consumed

by the control module is equal to energy dissipated by TCAM

(varying from 0.7 to 17.2 fJ/bit/search depending on the

match line architecture [6]). Thus, the energy required by a

given TCAM chip depends only on the memory size and the

number of searches requested in a given time period. Energy

consumption of the most popular TCAM, i.e., the NOR TCAM

is estimated to 5.3 fJ/bit/search, and used in this evaluation.

The second metric used to compare TCAM-ALG with the

existing algorithms is the cost of used memory expressed

in the number of required transistors. We assume that the

Beneš, sequential, and matrix algorithms are executed in a

control module using Synchronous Dynamic RAM (SDRAM).

SDRAM requires only one transistor per bit while a bit of

TCAM corresponds to 6–18 transistors depending on the

TCAM architecture. We assume that a single cell of memory

(with a mask) contains 8 transistors for NOR TCAM [6, 18].

B. Results

Energy consumed by a control module (running different

algorithms) to find paths for all arriving connections over

24 hours for switching fabric size N = 8, 16, 32 and for

different offered traffic is presented in Fig. 6. Capacity of each

interface is equal to 10 Gbps. We use Poisson traffic model

with mean packet length 454 Bytes and offered traffic varied

between 0.1 and 0.9 Erl. Energy consumed by the control

module working under TCAM-ALG, Beneš, and sequential

algorithms slightly grows with increasing offered traffic and

N (differences lower than 0.5 kWh/day). The increase of

energy consumption in function of N is exponential in case

of the matrix algorithm. Furthermore, the amount of energy

consumed in case of TCAM-ALG is lower by an order of

magnitude than in case of the Beneš and sequential algorithms

(the ratio of energy consumed in case of TCAM-ALG to other

algorithms varying in range 0.07–0.36), and by a few orders

of magnitude than the matrix algorithm (0.001–0.023). The

poor performance of the matrix algorithm is caused by the

fact that the size of matrices used in this algorithm increases

exponentially, and with the same rate increases the number

of required updates in the matrices. Moreover, for a given

N , the energy consumption increases faster for the three

alternative algorithms than for TCAM-ALG with increasing

offered traffic.

Fig. 7 presents costs of memory used to store state of the

switching fabric expressed in the number of used transistors.

We can observe that the proposed algorithm requires more

transistors than the Beneš and sequential algorithms. Although

more expensive in terms of transistors, TCAM-ALG does not

use any CPU. The cost of CPU is difficult to express in

terms of used transistors, because the CPU may be used to

realize tasks other than path searching. A specific cost metric

0
.0

0
2

0
.0

1
1

0
.0

1
6

0
.0

8
6

0
.0

1
1

0
.1

0
3

0
.1

1
8

0
.4

2
3

0
.0

2
0

0
.2

6
5

0
.2

7
4

0
.7

6
7

E
n
er

g
y
 [

k
W

h
]

0.1 Erl 0.5 Erl 0.9 Erl

T S B M T S B M T S B M

10
-2

10
0

10
2

(a) N = 8

0
.0

0
4

0
.0

1
1

0
.0

2
5

0
.7

9
3

0
.0

1
9

0
.1

0
4

0
.1

0
3

3
.8

9
9

0
.0

3
4

0
.2

7
1

0
.3

9
3

6
.6

0
1

E
n
er

g
y
 [

k
W

h
]

0.1 Erl 0.5 Erl 0.9 Erl

T S B M T S B M T S B M

10
-2

10
0

10
2

(b) N = 16

0
.0

0
8

0
.0

1
1

0
.0

3

7
.5

9
9

0
.0

4
2

0
.1

0
6

0
.2

0
2

3
7
.7

3
1

0
.0

7
5

0
.2

7
4

0
.4

7
3

6
7
.6

7
8

E
n
er

g
y
 [

k
W

h
]

0.1 Erl 0.5 Erl 0.9 Erl

T S B M T S B M T S B M

10
-2

10
0

10
2

(c) N = 32

Fig. 6. Energy [kWh] consumed by a control module over a day when using different control algorithms for varied switching fabric size N and different
offered traffic [Erl] (algorithms: T – TCAM-ALG, S – sequential, B – Beneš, M – matrix).

T S B M T S B M T S B M

Algorithms

100

101

102

103

104

N
u
m

b
er

 o
f

T
ra

n
si

st
o
rs

 [
u
n
it

s]

N = 8 N = 16 N = 32

Fig. 7. Memory costs (algorithms: T – TCAM-ALG, S – sequential, B –
Beneš, M – matrix).

to account for both transistors and CPU usage is left for future

work. Furthermore, we point out that the proposed TCAM-

ALG requires comparable or lower number of transistors than

the matrix algorithm.

VI. CONCLUSION

We propose a control module that uses De Bruijn graphs,

TCAM, and no CPU to determine paths for connections

arriving at a network node. Daily energy consumption of

the control module running the proposed TCAM-ALG is

reduced by up to 100 times in comparison to three alternative

algorithms known from the literature. On the other hand, two

alternative algorithms, i.e., Beneš and sequential algorithm

require memory with fewer transistors than TCAM-ALG. As

future work, we are going to check whether the high usage of

transistors required by TCAM in TCAM-ALG is compensated

in terms of Operational Expenditure by no need of a CPU.

We are also working on further optimization of the proposed

algorithm in order to limit the size of used TCAMs.

ACKNOWLEDGMENT

The work of Filip Idzikowski was supported by the National

Science Centre, Poland (decision DEC-2014/12/S/ST7/00415).

The work of Mariusz Żal was supported by the funds from the

Polish Ministry of Science and Higher Education for the year

2017 under Grant 08/82/DSPB/8221.

REFERENCES

[1] R. Bolla, R. Bruschi, F. Davoli, and F. Cucchietti, “Energy efficiency in
the future Internet: A survey of existing approaches and trends in energy-

aware fixed network infrastructures,” IEEE Communications Surveys &

Tutorials, vol. 13, no. 2, pp. 223–244, Second Quarter 2011.
[2] A. P. Bianzino, C. Chaudet, D. Rossi, and J.-L. Rougier, “A survey of

green networking research,” IEEE Communications Surveys & Tutorials,
vol. 14, no. 1, pp. 3–20, First Quarter 2012.

[3] F. Idzikowski, L. Chiaraviglio, A. Cianfrani, J. López Vizcaı́no,
M. Polverini, and Y. Ye, “A survey on energy-aware design and operation
of core networks,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 2, pp. 1453–1499, Second Quarter 2016.

[4] W. Kabaciński, Nonblocking Electronic and Photonic Switching Fabrics.
Springer, 2005.

[5] H. Huang, S. Guo, J. Wu, and J. Li, “Green DataPath for TCAM-based
Software-Defined Networks,” IEEE Communications Magazine, vol. 54,
no. 11, pp. 194–201, Nov. 2016.

[6] S. H. Yang, Y. J. Huang, and J. F. Li, “A low-power ternary content
addressable memory with Pai-Sigma matchlines,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 20, no. 10, pp. 1909–
1913, Oct. 2012.

[7] C.-T. Lea, “Multi-log2N networks and their applications in high-speed
electronic and photonic switching systems,” IEEE Transactions on

Communications, vol. 38, no. 10, pp. 1749–1740, Oct. 1990.
[8] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory

(CAM) circuits and architectures: A tutorial and survey,” IEEE Journal

of Solid-State Circuits, vol. 41, no. 3, pp. 712–727, March 2006.
[9] N. G. de Bruijn, “A Combinatorial Problem,” Koninklijke Nederlandsche

Akademie Van Wetenschappen, vol. 49, no. 6, pp. 758–764, June 1946.
[10] M. G. Hluchyj and M. J. Karol, “ShuffleNet: an application of gen-

eralized perfect shuffles to multihop lightwave networks,” IEEE/OSA

Journal of Lightwave Technology, vol. 9, no. 10, pp. 1386–1397, Oct.
1991.

[11] F. Tekiner, Z. Ghassemlooy, S. Al-Khayatt, and M. Thompson, “Imple-
mentation and evaluation of ShuffleNet, Gemnet and De Bruijn graph
logical network topologies,” in Proc. PDCN, Innsbruck, Austria, Feb.
2004.

[12] W. Kabaciński and M. Michalski, “The routing algorithm and wide-sense
nonblocking conditions for multiplane baseline switching networks,”
IEEE Journal on Selected Areas in Communications, vol. 24, no. 12,
pp. 35–44, Dec. 2006.

[13] B. D. Yang, “Low-power effective memory-size expanded TCAM using
data-relocation scheme,” IEEE Journal of Solid-State Circuits, vol. 50,
no. 10, pp. 2441–2450, Oct. 2015.

[14] Y. Nozaki, N. Shenoy, and A. Gupta, Power Usage Efficiency with a

Modular Routing Protocol. Springer International Publishing, 2016.
[15] V. Konstantakos, A. Chatzigeorgiou, S. Nikolaidis, and T. Laopoulos,

“Energy consumption estimation in embedded systems,” IEEE Transac-

tions on Instrumentation and Measurement, vol. 57, no. 4, pp. 797–804,
Apr. 2008.

[16] J. T. Russell and M. F. Jacome, “Software power estimation and
optimization for high performance, 32-bit embedded processors,” in
Proc. ICCD, Washington, USA, Oct. 1998.

[17] S. Nikolaidis, N. Kavvadias, P. Neofotistos, K. Kosmatopoulos,
T. Laopoulos, and L. Bisdounis, “Instrumentation set-up for instruction
level power modeling,” in PATMOS, Jan. 2002.

[18] P. J. Ashenden, Digital Design (VHDL): An Embedded Systems Ap-

proach Using VHDL. Elsevier Science, 2007.

	Introduction
	Node architecture using TCAM
	Data plane
	Control plane

	Switching fabric model with De Bruijn graphs
	Proposed Node Control Algorithm TCAM-ALG
	Evaluation
	Scenarios and metrics
	Results

	Conclusion

